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Active devices have drawn considerable attention owing to their powerful capabilities to manipulate electro-
magnetic waves. Fast and periodic modulation of material properties is one of the key obstacles to the prac-
tical implementation of active metamaterials and metasurfaces. In this study, to circumvent this limitation,
we employ a cascaded phase-matching mechanism to amplify signals through spatiotemporal modulation of
permittivity. Our results show that the energy of the amplified fundamental mode can be efficiently trans-
ferred to that of the high harmonic components if the spatiotemporal modulation travels at the same speed as
the signals. This outstanding benefit enables a low-frequency pump to excite parametric amplification. The
realization of cascaded parametric amplification is demonstrated by finite-difference time-domain (FDTD)
simulations and analytical calculations based on the Bloch–Floquet theory. We find that the same lasing state
can always be excited by an incidence at different harmonic frequencies. The spectral and temporal responses
of the space-time modulated slab strongly depend on the modulation length, modulation strength, and
modulation velocity. Furthermore, the cascaded parametric oscillators composed of a cavity formed
by photonic crystals are presented. The lasing threshold is significantly reduced by the cavity resonance.
Finally, the excitation of cascaded parametric amplification relying on the Si-waveguide platform
is demonstrated. We believed that the proposed mechanism provides a promising opportunity for
the practical implementation of intense amplification and coherent radiation based on active
metamaterials. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.472233

1. INTRODUCTION

Active devices can enable a wealth of advanced functions in
photon manipulation, including frequency conversion [1–4],
amplification [5–7], and isolation [8–15], which can hardly
be achieved by conventional passive devices. Instead of realizing
new functions based on established mechanisms, time has
merged as a new degree of freedom to control waves
[16,17]. The periodic modulation of optical properties in time
and space enables photonic interband transition [18], quasi-
phase matching for momentum and energy [19], unidirectional
amplification [20], dispersion engineering [7,21], and parity-
time (PT)-phase transition [6,22]. Several temporal counter-
parts of the physical effects are unveiled, e.g., Fresnel drag
[23], Anderson localization [24], and Wood anomalies [25].
In addition, from the perspective of topology, time modulation
enables a new synthetic dimension to excite high-dimensional
topological states [26–30].

Despite the thriving development in theory, the realization
of fast modulation becomes a formidable challenge that pre-
vents active metamaterials and metasurfaces from being used
in practical applications. Many efforts have been made to realize
dynamic modulation by new materials and advanced nanofab-
rication [1,2,8–10,31–34]. The sudden change in the refractive
index on the order of the subpicosecond has been realized by
photonic excitation [31]. It enables frequency conversion at
near-infrared frequencies [1]. However, some applications,
e.g., isolation, require the periodic modulation of material
properties in space and time simultaneously. The periodic
modulation with a frequency ranging from several GHz to
THz has been demonstrated based on photoelectric [8], photo-
acoustic [9,13], and nonlinear Kerr effects [10]. After all, the
applications based on dynamic modulation are still hampered
by the implementation of fast modulation at infrared and
optical frequencies.
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Parametric amplification (PA) is an irreplaceable mechanism
that is used to generate coherent light at frequencies that are not
sustained by the gain media in nature. In the past decades, PA
has also revolutionized the generation of isolated attosecond
pulses and is promoting the development of strong field physics
[35]. Compared with amplifications based on semiconductor
and rare-earth-doped media, PA is phase-sensitive and can re-
duce noise approaching quantum limits by locking the phase
between pump and idler waves [36–39]. At present, PA at op-
tical and infrared frequencies relies on second-order or third-
order susceptibility of nonlinear materials. Due to the weak
nature of nonlinearity, high-intensity and bulky pump sources
are usually required, which hinders the integration and minia-
turization of devices.

On the other hand, PA can be realized by time modulation.
This mechanism is widely used at microwave frequencies.
However, it is rarely employed at high frequencies since it re-
quires a modulation frequency comparable to the operating fre-
quency [40,41]. Such a frequency limitation is enforced by the
Manley–Rowe relations [42]. To relax the restriction on the
modulation frequency, we introduce the spatiotemporal modu-
lation to realize cascaded phase matching between the signal
and the amplified fundamental modes at half of the modulation
frequency. As shown in Figs. 1(a) and 1(b), the permittivity of
the medium is periodically modulated in both space and time.
It enables the phase matching of energy and momentum at the
same time. Hence, by choosing proper modulation frequencies,
efficient cascaded frequency conversion is possible. As a result, a
signal with the frequency ωinc much higher than the modula-
tion frequency Ω can be amplified in a cascaded manner
[Figs. 1(c) and 1(d)]. This remarkable advantage makes the
realization of PA in a time-modulated system possible by using
a low-frequency modulation.

In this work, we first show the eigenstate and eigenvalue of
space-time modulated media. Second, the realization of cas-
caded PA is demonstrated by calculating the scattering coeffi-
cients of a space-time modulated slab. Next, the lasing nature
of cascaded PA and the characteristics of gain mechanisms are

analyzed. Finally, the cascaded parametric oscillator and the
Si-waveguide-based cascaded PA are presented.

2. CASCADED PARAMETRIC AMPLIFICATION

A. Cascaded PA Based on Quasi-phase Matching
First, we show PA supported by time-modulated media with
permittivity ε�t� � εs�1� 2α cos Ωt�, where α is the modu-
lation strength, Ω is the modulation frequency, εs is the back-
ground permittivity, and vs � �εsμ0�−1∕2 is the phase velocity
of unmodulated signal waves. The dispersion relation of the
time-modulated media is shown in Fig. 2(a). Unlike the tradi-
tional photonic crystals, which open bandgaps in the frequency
domain, the periodic time modulation forms the inverted
bandgaps in the k space. In the inverted bandgaps, eigenfre-
quencies are complex numbers, and the corresponding eigen-
state will be amplified with time, which is the well-known PA.
The imaginary part of the eigenfrequency corresponds to the
exponential growth rate of the PA and is used for characterizing
the parametric gain of the time-modulated system.

From a different perspective, the temporal modulation with
pump frequency Ω couples the forward propagating signal and
the backward propagating idler at the frequencies of Ω∕2 and

Fig. 1. (a) Schematic of scattering from a space-time modulated
slab. (b) The profile of space-time modulated permittivity. (c) The
signal can be amplified with time by compensating for the phase mis-
matching through spatiotemporal modulation. (d) The transmission
spectrum. A series of harmonic components with spaced frequency
Ω are excited, and the signal is amplified in a cascaded manner.

Fig. 2. PA in time-varying media and quasi-phase matching for am-
plification at the high harmonic frequencies. (a) The dispersion
relation of the photonic Floquet media with sinusoidally modulated
permittivity ε�t� � εs �1� 2α cosΩt�, where α � 0.1, εs �
1:462ε0, and K s � Ω∕vs . The shadowed area shows the first
Brillouin zone. The red dashed lines indicate the light lines and
the blue arrow shows the phase mismatching between the inverted
bandgap and the light line. (b) The amplitude of the high harmonic
modes as the modulation strength α increases. (c) By introducing
spatial modulation with permittivity ε�x, t� � εs�1� 2α cosΩt �
2β cos K x�, the inverted bandgaps generate copies of themselves
by shifting K . (d) The amplitude of the high harmonic modes as
the modulation strength β increases, where α � 0.01. Note that
the corresponding eigenfrequencies of the eigenstates shown in
(b) and (d) are complex numbers.
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−Ω∕2, respectively [Fig. 2(a)]. The presence of signal waves
stimulates the downward frequency conversion leading to
the excitation of the idler waves, which in turn amplifies the
signal waves through the up-conversion process. Hence, the
generation of the signal and idler waves is reinforced by each
other, and PA is supported.

As shown in Fig. 2(a), the inverted bandgaps also exist at
high harmonic frequencies, e.g., 5.5 Ω, due to the repetition
of dispersion relation beyond the first Brillouin zone. However,
the magnitude of the electric field at high harmonic frequencies
remains small for the modulation strength reaching up to 10%
of static permittivity [Fig. 2(b)]. This is because the high har-
monic modes are not the allowed modes in the unmodulated
media, and their existence relies on the small perturbation. To
amplify the signal at a frequency higher than the modulation
frequency, the phase mismatching between the amplifying state
and the light line needs to be compensated [shown as the blue
arrow in Fig. 2(a)].

To compensate for the phase mismatching, we apply spatio-
temporal modulation to amplify the signal at the frequency of
5.5Ω. We consider the media with permittivity ε�x, t� �
εs�1� 2α cos Ωt � 2β cos K x�, where K � 5K s. As shown
in Fig. 2(c), the inverted bandgaps create copies of themselves
by shifting K due to the introduction of spatial modulation. As
a result, the inverted bandgap appears near the light line.
However, the amplitude of the high harmonic components
is still small [Fig. 2(d)]. The reason for the inefficient ampli-
fication at the high frequencies can be attributed to the indirect
coupling between the fundamental mode and the eigenstates of
the unperturbed media. Hence, to increase the amplitude of the
harmonic mode at the high frequency, proper spatial and tem-
poral modulation frequencies should be introduced to directly
couple the amplifying state and eigenstates near the light line.

B. Cascaded PA Based on Luminal Modulation
In addition to PA, a distinct amplifying process is found to be
available by introducing the traveling-wave-like modulation
[43]. It has been demonstrated that the number of harmonic
components is exponentially increased along the propagation if
the modulation velocity equals the phase velocity of the
unmodulated signal waves. Such an amplification process,
named as luminal amplification (LA), leads to the exponential
growth of energy along the propagation [43]. Next, we utilize
LA to realize efficient cascaded PA.

Here, we consider a dispersionless space-time modulated
medium with permittivity

ε�x, t� � εs �1� 2α cos�K x − Ωt� � 2β cos Ωt �, (1)

where α and β are the modulation strengths. The modulation
velocity is defined as vm � Ω∕K . The second term in Eq. (1)
represents the luminal modulation if the modulation velocity
is within the range �1� 2α� 2β�−1∕2 ≤ vm∕vs ≤
�1 − 2α − 2β�−1∕2. In this regime, the phase synchronism of
all the harmonic components enables efficient frequency con-
version in a cascaded manner for sinusoidal modulation. The
capability of the efficient frequency conversion is described by
the luminal gain in Appendix C. If the luminal gain is compa-
rable with the parametric gain, the energy of the amplified

fundamental mode should be efficiently transferred to the har-
monic modes at high frequencies.

1. Eigenvalues and Eigenstates
In Fig. 3, we show the eigenfrequencies and eigenstates of me-
dia with permittivity described by Eq. (1).

As shown in Fig. 3(a), multiple inverted and normal pho-
tonic bandgaps arise. They originate from the coupling be-
tween forward and backward propagating waves. As a
reference, the dispersion relation of media with α, β → 0 is
shown as gray solid lines in Fig. 3(a). It satisfies
ωm,n � �vskm, where (m, n) indicates the order of the har-
monic modes, ωm,n � ω� �m� n�Ω is the corresponding
harmonic frequency, and km � k � mK is the spatial fre-
quency of the harmonic mode. As an example, Table 1 shows
the interacting harmonic modes that form the photonic bandg-
aps. The coupling frequency and wavenumber are denoted as
Δω and Δk, respectively. In general, the inverted (normal)
bandgap will be generated if the modulation velocity is

Fig. 3. Eigenvalues and eigenstates of space-time modulated media.
The dispersion relation of the space-time modulated media with the
modulation velocity in (a) the subluminal regime [Ω∕K �
�1.023εsμ0�−1∕2 < vs], (b) the luminal regime (Ω∕K � vs), and (c)
the superluminal regime [Ω∕K � �0.978εsμ0�−1∕2 > vs]. The permit-
tivity is given by Eq. (1), where α � β � 0.01. The real and imaginary
parts of the eigenfrequencies are depicted in the top and bottom pan-
els, respectively. The colored dots show the real part of the eigenfre-
quencies in the inverted bandgaps in the top panels. The gray solid
lines show the dispersion curves with α, β → 0. The red dashed lines
in (a) and (b), as well as the blue dashed line in (c), depict the light
lines. (d) A typical eigenstate in the inverted bandgap of (b). (e) The
corresponding harmonic frequencies and wavenumbers of eigenstate
in (d).

Table 1. Type of Photonic Bandgapa

No. Type (m,n), +a (m,n), −a Δk, Δω
1 Inverted (0,0) (0,−1) 0, Ω
2 Normal (0,0) (−1,1) K, 0
3 Normal (−1,0) (0,−1) K, 0
4 Inverted (−1,0) (−1,1) 0, Ω

a+/− indicates the propagation direction.
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Δω∕Δk > vs (Δω∕Δk < vs), which corresponds to the super-
luminal (subluminal) modulation [42,44].

By increasing the modulation velocity from the sublumi-
nal regime to the luminal regime, the normal and inverted
bandgaps are merged, as shown in Fig. 3(b). To further increase
vm, the bandgaps are separated again [Fig. 3(c)].

The eigenstate of media with vm � vs is shown in Fig. 3(d).
The amplitude of the high harmonic components is signifi-
cantly improved. The corresponding wavenumbers are shown
in Fig. 3(e). It is found that the amplitude of the harmonic
components near the light lines is significantly larger than that
of other modes.

2. Scattering from the Slab
To further check the performance of cascaded PA based on lu-
minal modulation, we calculate the transmission from a spatio-
temporal modulated slab.

In Fig. 4(a), the magnitudes of the reflection and the trans-
mission coefficients increase with the modulation length. Due
to the scattering loss, the system is static when the modulation
length Lm is smaller than the threshold length l c . A similar re-
lationship exists in time-varying media [see Fig. 9(a) in
Appendix B].

When Lm > l c , the system is unstable. As shown in Fig. 4(b),
the signal at the frequency of 10.5Ω is exponentially amplified

after a period of time. To estimate the starting point of lasing,
we fit the exponential growth rate of transmission waves. The
cross point between the fitted line and static amplitude at
the beginning is defined as the critical time for lasing, denoted
as tc . After the critical time point, the amplifying state becomes
the dominant one while the static states can be ignored.

The corresponding transmission spectrum is shown in
Fig. 4(c). Since the high harmonic components are amplified
by absorbing energy from the fundamental mode, the transmis-
sion spectrum is normalized by the amplitude of the electric field
at the fundamental frequency, i.e., E tra�Ω∕2�, to characterize the
luminal gain. A series of harmonic components are amplified at
the same time. It demonstrates that the proposed modulation can
amplify signals by a low-frequency pump. The proposed modu-
lation for PA can be employed to generate a frequency comb.

We also solved the scattering coefficients of the amplifying
state based on the Bloch–Floquet theory. In fact, the lasing state
corresponds to a singular state of a space-time modulated slab.
Hence, the scattering problem can be solved by an eigenvalue
problem without incidence (for more details refer to
Appendix A). The numerical and analytical results are in good
agreement, as shown in Fig. 4(c).

3. Excitation of Time-growing Mode and Efficient
Frequency Conversion
The temporal and the spectral responses of cascaded PA show
both characteristics of LA and PA [Figs. 4(b) and 4(c)]. In this
section, the gain mechanisms of the cascaded PA through the
space-time modulated media are analyzed.

The singular nature of the lasing state implies that the un-
stable state can be excited by the incidence at any harmonic
frequency with non-negligible amplitude in Fig. 4(c). To dem-
onstrate this, we calculate the response of the same modulation
excited by an incidence at different harmonic frequencies based
on finite-difference time-domain (FDTD) simulation and
compare it with the analytical results. As shown in Fig. 5(a),
the fitted exponential growth rate based on numerical simula-
tions fluctuates around the theoretical results [see the gray
dashed line in Fig. 5(a)]. The corresponding eigenstates are
compared in Fig. 5(b). The consistency between numerical
and analytical results further proves that the same state is ex-
cited. The only difference that is shown in the numerical results
[Fig. 5(a)] is that the critical time point of lasing is delayed for
input at high harmonic frequencies.

In addition to the modulation strength β, the parametric gain
also depends on the modulation length. As shown in Fig. 5(c),
the exponential growth rate increases with the modulation
length, and the parametric gain tends to be saturated for a
lengthened modulation range. The same behavior appears in PA
[Fig. 9(c)]. The eigenstate with a larger exponential growth rate
can be excited when the scattering loss in the slab is suppressed.

On the other hand, LA behaves as an efficient frequency
converter in cascaded PA. As shown in Fig. 5(d), the highest
order of frequency conversion in cascaded PA increases with the
modulation strength α. The corresponding exponential growth
rates ωi are shown in Fig. 11(a) in Appendix D. We assume
that the harmonic components are efficiently amplified if the
amplitude is larger than one percent of the magnitude at
the fundamental frequency. For β � 0, the luminal gain can

Fig. 4. Cascaded PA supported by a space-time modulated slab.
(a) The amplitude of the reflection and the transmission coefficients
as the modulation length Lm increases. l c represents the threshold
length of modulation for lasing. Here, ωinc � Ω∕2. (b) The temporal
response of the space-time modulated slab with Lm � 1.1lPA > lc
based on FDTD simulations. The critical time point of lasing is esti-
mated by the cross point between the fitted amplified amplitude and
the static amplitude before lasing (black dashed lines), denoted as t c .
The numerically fitted and analytically calculated exponential growth
rates ωi are given. (c) The corresponding transmission spectrum. The
analytical and numerical results are shown by circles and the solid line,
respectively. The incident frequency is equal to 10.5Ω in (b) and (c).
The permittivity of the modulated slab is given by Eq. (1) with
K � K s , α � 0.05, β � 0.1, and εs � 1:462ε0.
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be simply evaluated by the exponential relationship between
the number of excited harmonic modes and the propagation
length (for more details refer to Appendix C). However, for
β ≠ 0, the highest order of frequency conversion in cascaded
PA does not exponentially increase with propagation [see
Fig. 11(b) in Appendix D]. This can be attributed to the cou-
pling with the time-growing state. The highest order of fre-
quency conversion presents the capability to transfer energy
from the amplified fundamental mode to high harmonic com-
ponents, which are different from traditional LA [43].

3. CASCADED PARAMETRIC OSCILLATOR

To reduce the lasing threshold and improve the performance of
the amplifier, we design a cascaded parametric oscillator (CPO)
composed of a space-time modulated slab and a cavity formed
by photonic crystals, as shown in Fig. 6(a). Here, the photonic
crystals play a role in high reflection mirrors for all harmonic
components. The resonant conditions are satisfied when the
phase change of a round trip in the cavity equals 2mπ for
m ∈ Z [see Fig. 12(b) in Appendix E]. The responses of the
CPO with the varying length of cavities are presented in
Fig. 6(b). It is found that the signal can be amplified when
the phase conditions of resonance are fulfilled. The threshold
length of lasing is decreased to 0.07lPA and is much smaller
than the threshold length of lasing without a cavity.

In addition, we design a CPO operating at a single frequency.
The photonic crystals are designed to only allow the transmission
at the frequency of 10.5Ω and serve as high reflection mirrors for

other harmonic components. The results show that the signal is
amplified with time [Fig. 6(c)], and no parasite harmonic modes
transmit through the CPO [Fig. 6(d)].

4. Si-WAVEGUIDE-BASED CASCADED PA

Intense amplifiers and light sources at mid-infrared frequencies
are extremely desired for the applications of sensing and com-
munications due to the strong characteristic resonances of mol-
ecules and the existence of atmospheric transmission windows
[45]. Benefiting from the non-dispersive nature of silicon

Fig. 5. (a) Exponential growth rate ωi and critical time point tc of
lasing are calculated by FDTD simulations with the incidence at dif-
ferent frequencies. The dashed line shows the analytically calculated
ωi . (b) The amplitude of the transmission field calculated by the
Bloch–Floquet theory (diamonds) and FDTD simulations (light gray
dots). The error bars show the mean and the standard deviation of the
field amplitude excited by an incidence at different frequencies.
(c) The exponential growth rate as the modulation length increases.
(d) The highest order of frequency conversion as the modulation
strength α increases.

Fig. 6. (a) Schematic of the CPO composed of a space-time modu-
lated slab and a cavity formed by photonic crystals. (b) The temporal
response of the space-time modulated slab with varying modulation
lengths. Here, α � β � 0.005 and K � K s . The number of periods
is equal to 3 for both PCs on the right and left sides. (c) The temporal
response and (d) the transmission spectrum of the CPO operating at a
single frequency. The photonic crystal is designed to only allow trans-
mission at the frequency of 10.5Ω. Here, α � 0.049, β � 0.05,
K � 0.95K s , and εs � 3:52ε0. The number of periods is equal to
40 for both PCs. For the parameters of the photonic crystals and
the band structure see Figs. 12(a) and 12(c) in Appendix E.

Fig. 7. Cascaded PA based on the Si waveguide. (a) The dispersion
relation of an unmodulated Si waveguide with the width of waveguide
dWG � 2πc0∕�nSiΩ� and the refractive index of Si nSi � 3.5. The fit-
ted velocity of the TE0 mode is equal to 0.996c0∕nSi and is set as the
modulation velocity vm to achieve cascaded PA. (b) The transmission
spectrum of Si waveguide with space-time modulation described by
Eq. (1). Here, α � 0.04, β � 0.05, and Lm � 1.5lPA .
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beyond ∼1100 nm, silicon waveguides become the superior
platform to achieve cascaded PA. As shown in Fig. 7(a), the
dispersion curve of the TE0 mode is almost linear. The modu-
lation velocity vm is set to equal the fitted group velocity of the
guided mode to realize cascaded PA.

The signal at the frequency of 5.5Ω can be amplified by
imposing spatiotemporal modulation given by Eq. (1), as
shown in the inset of Fig. 7(b). The results show that cascaded
PA is immune to the moderate dispersion of the guided mode.
The spectrum of the transmission field is presented in Fig. 7(b).

5. CONCLUSION

In summary, we reported that PA can be achieved in a spa-
tiotemporal modulated medium with a modulation frequency
much lower than the oscillation frequency of electromagnetic
waves. Benefitting from the strong interaction between har-
monic modes based on luminal modulation, it has been

demonstrated that the energy can be efficiently transferred
from the amplified fundamental mode to the signal in a cas-
cading manner. It is found that the lasing state cannot be ex-
cited if the parametric gain is unable to compensate for the
scattering loss. Based on the characteristics of PA and LA,
we presented that the parametric gain can be evaluated by
the exponential growth rate of the amplifying state, and the
luminal gain can be assessed through the efficiency of har-
monic conversion from the amplified fundamental mode.
Furthermore, we have shown that the threshold of cascaded
PA can be significantly reduced by introducing a cavity res-
onating at all harmonic frequencies. Finally, realistic imple-
mentation of cascaded PA based on a Si waveguide is
proposed. We show that the cascaded PA is immune to the
moderate dispersion of the guided mode. Our design not only
provides a practical solution for amplification and radiation
based on spatiotemporal modulation at infrared and optical
frequencies but also opens up a new opportunity to control,
for example, spontaneous emission [46–49].

APPENDIX A: BLOCH–FLOQUET THEORY TO
SOLVE SCATTERING COEFFICIENTS OF A
SPACE-TIME MODULATED SLAB

In this section, we solve the eigenvalues and eigenstates of me-
dia with permittivity described by Eq. (1). For normal inci-
dence, the electric and magnetic fields should satisfy
Maxwell’s equations given by

∂Ez

∂x
� μ0

∂Hy

∂t
, (A1a)

∂Hy

∂x
� ∂ε�x, t�Ez

∂t
: (A1b)

Due to the periodicity of permittivity in space and time, the
ansatz of Maxwell’s equations can take the Bloch–Floquet form

Ez�x, t� �
X�∞

m, n�−∞
Em,neikmx−iωm,nt , (A2a)

Hy�x, t� �
X�∞

m, n�−∞
Hm,neikmx−iωm,nt , (A2b)

where the harmonic frequency ωm,n � ω� �m� n�Ω and the
wavenumber km � k � mK for m, n ∈ Z . By inserting the
ansatz into Maxwell’s equations, the eigenvalue k or ω and ei-
genstates �Em,n,Hm,n�T can be solved through

�
kmEm,n � −c−10 ωm,nH̃m,n
kmH̃m,n � −εr,sc−10 ωm,n�Em,n � αEm−1,n � αEm�1,n � βEm,n−1 � βEm,n�1�

, (A3)

where H̃m,n � z0Hm,n, and z0 � �μ0∕ε0�1∕2 is the free space
impedance.

Note that the negative harmonic frequencies are included in
the calculations. In fact, the same state exists with positive fre-
quency. If we consider two states with real wavenumbers
k1 � −k2 and complex eigenfrequencies ω1 � −ω	

2 , then the
corresponding eigenstates have a relationship E �1�

m,n �
�E �2�

m,n�	, which can be verified by Eq. (A3). Hence, they are
in the same state located at the first and third quadrants or sec-
ond and fourth quadrants of the k − ω plane based on the com-
plex exponential form of ansatz.

Since the high degeneracy of harmonic components is in the
luminal regime, the Bloch–Floquet description of the solution
fails for finite terms of expansion in practical calculation, and
the eigenvalue problem will not converge [42]. However, for a
space-time modulated slab, the Bloch–Floquet expression is
valid and can well define the solution since the limited numbers
of harmonic components are excited for a finite length of
propagation [43].

The fields in the space-time modulated slab can be expressed
as the superposition of all allowed modes taking the form of
Bloch–Floquet expansion,

Ez�x, t� �
X�∞

p,m, n�−∞
apE

�p�
m,neik

�p�
m �x�Lm∕2�−iωm,nt , (A4a)

Hz�x, t� �
X�∞

p,m, n�−∞
apH

�p�
m,neik

�p�
m �x�Lm∕2�−iωm,nt , (A4b)

for x ∈ �−Lm∕2, Lm∕2�, where ap represents the unknown
modal coefficient of mode p, and kp and �E �p�

m,n,H
�p�
m,n�T are the
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eigenvalue and the eigenstate of mode p solved by Eq. (A3). At
the boundary between the background media and the space-
time modulated slab, the electric and magnetic fields should
be continuous at any time. It gives

Ez

�
x � � L

2
� 0�, t;ωm,n

�
� Ez

�
x � � L

2
� 0−, t;ωm,n

�
,

(A5a)

Hy

�
x � � L

2
� 0�, t;ωm,n

�
� Hy

�
x � � L

2
� 0−, t;ωm,n

�
:

(A5b)

The reflection and transmission fields contain all harmonic
components

Er
z�x, t� �

X�∞

m, n�−∞
Er
m,ne−iωm,n ��x�L∕2�∕vs�t �, (A6a)

Hr
z�x, t� �

X�∞

m, n�−∞
ηsE r

m,ne−iωm,n ��x�L∕2�∕vs�t �, (A6b)

Et
z�x, t� �

X�∞

m, n�−∞
Et
m,neiωm,n ��x−L∕2�∕vs−t �, (A6c)

Ht
z�x, t� �

X�∞

m, n�−∞
−ηsE t

m,neiωm,n��x−L∕2�∕vs−t �, (A6d)

where ηs � �εs∕μ0�1∕2 represents the admittance of the back-
ground media. Note that the reflection and the transmission
waves should satisfy the dispersion relation ω∕vs � k. For a
given complex frequency, the corresponding wavenumber will
be a complex number, and the amplitude of waves will decay
with propagation and be amplified with time.

By applying boundary conditions, the scattering coefficients
can be solved. In practical calculation, the harmonic order is
truncated. For the convenience of calculation, the boundary
conditions are rewritten in matrix form�

E�x � −L∕2� 0−;ωm,n�
H�x � −L∕2� 0−;ωm,n�

�
� Ti

�
Ei
Er

�
, (A7a)

�
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�
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2
� 0
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�
E�x � L∕2� 0�;ωm,n�
H�x � L∕2� 0�;ωm,n�

�
� Tt

�
Et
O

�
, (A7c)

where Ei,�r,t� is a column vector composed of all harmonic
fields; the transfer matrix of the incident and transmission

media is Ti � Tt �
�

I I
−ηsI ηsI

�
and the transfer matrix

in the space-time modulated media Tp�x� �2
66666666666664

..

. ..
.

� � � E �p−1�
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. ..
.
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are

written according to Eqs. (A6) and (A4), respectively.
By eliminating the modal coefficients ap, it gives�

Et
O

�
� T

�
Ei
Er

�
�

�
T11 T12

T21 T22

��
Ei
Er

�
, (A8)

where the transfer matrix T � T−1
t Tp�x � L

2�T−1
p �x � − L

2�Ti.
Hence, the scattering coefficients can be solved by�

Er � −T−1
22T21Ei

Et � T11Ei � T12Er
: (A9)

Equations (A8) and (A9) are available for static solutions with
real frequency. However, the system is unstable if the modulation
length is larger than the threshold length and the frequency will
be a complex number (see Fig. 4). In this case, the amplitude of
the reflection and the transmission fields will increase with time.
However, for the static input with constant amplitude, the boun-
dary conditions cannot be satisfied. In fact, since the lasing state
corresponds to a singular state of the space-time modulated sys-
tem, the scattering fields can be solved by the eigenvalue problem
without incidence. Then, Eq. (A8) can be rewritten as�

T12 −I
T22 O

��
Er
Et

�
� M

�
Er
Et

�
� O: (A10)

Note that this eigenvalue problem is quite different from the
common scattering problem. For common scattering problems,
e.g., Eq. (A8), the transfer matrixTp can be explicitly expressed by
solving Eq. (A3) for a given incident frequency. However, for the
unstable state, the frequency for lasing is an unsolved singularity
of Eq. (A10), and the transfer matrix Tp cannot be explicitly ex-
pressed. Therefore, to solve this eigenvalue problem, Eq. (A3)
needs to be involved at the same time. We solve it by first giving
trial solutions of the eigenfrequency. Hence, the wavenumber kp
and the corresponding eigenvectors can be explicitly expressed by
Eq. (A3). In general, the eigenfrequency for lasing can be solved
by finding the zero determinant of matrix M.

APPENDIX B: PA IN A TIME-FLOQUET SLAB

In this section, following the same procedure in Ref. [50], we
calculate the lasing threshold of the time-varying slab with per-
mittivity

ε�x, t� � εs�1� 2α cos Ωt�: (B1)

In the meantime, time modulation plays a role in the PA of
the fundamental mode in Eq. (1). A similar dependency of the
exponential growth rate on the modulation length, as shown in
Figs. 4(a) and 5(c), is also presented in this section.
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Due to the periodicity of permittivity, the solution of
Maxwell’s equations [Eqs. (A1a) and (A1b)] can be expanded
as the time-Floquet form. For small α, only the harmonic
modes at the frequencies near �Ω∕2 have non-negligible am-
plitude. Hence, the ansatz can be expressed as

Ez�x, t� � eikx−iωt�E−1eiΩt � E0�: (B2)

By inserting Eqs. (B1) and (B2) into Maxwell’s equations, the
eigenvalues and the eigenstates can be solved. Here, we introduce
dimensionless parameters κ � vsk∕�Ω∕2� � 1� δκ and
ω̃ � ω∕�Ω∕2� � 1� δω̃ and apply approximation δκ2 ≈ 0,
δω̃2 ≈ 0, and ω2 ≈ �Ω∕2�2. The dispersion relation and eigen-
states of the time-varying media can be explicitly expressed as

δκ2 − δω̃2 ≈ �α∕2�2, (B3a)

�
E0

E−1

�
�

�
1

δκ−δω̃
α∕2

�
: (B3b)

The dispersion relations are shown in Figs. 8(a) and 8(b).
Next, we solve the transition point from stable state to lasing

state. For real values of δω̃ � �Δ, it gives real values of
δκ � ���α∕2�2 � Δ2�1∕2 � �γ, where γ, Δ ≥ 0. By setting
E �0�
0 � E �1�

0 � 1, it gives E �0�
−1 � �γ − Δ�∕�α∕2� � c and

E �1�
−1 � −�γ − Δ�∕�α∕2� � −c. Assuming a plane wave incident

from the left (x < 0), the field inside the slab should contain all
possible harmonic components. The expression of the electric
fields can be found as

Ez�x, t� �

8>>><
>>>:
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2�t�xv−1s �, x ≤ 0

e−i�1�Δ�Ω2 t �Aei�1�γ�Ω2xv−1s � Be−i�1�γ�Ω2xv−1s − C	ce−i�1−γ�
Ω
2xv
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Ω
2xv

−1
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Ω
2t �Acei�1�γ�Ω2xv−1s � Bce−i�1�γ�Ω2xv−1s � C	e−i�1−γ�

Ω
2xv

−1
s � D	ei�1−γ�

Ω
2xv

−1
s �, x ∈ �0, L�

t0e−i�1�Δ�Ω2 �t−�x−L�v−1s � � t−1ei�1−Δ�
Ω
2 �t−�x−L�v−1s �, x ≥ L

: (B4)

By applying the boundary conditions at x � 0, L, i.e., the
continuity of electric fields and the derivative of electric fields
for x at each harmonic frequency, note that to simplify the cal-
culation, the approximations of 1� Δ ≈ 1 and 1� γ ≈ 1 are
applied in derivation. The reflection and transmission coeffi-
cients can be analytically solved:

r � r0 � r−1 � −i tan�αK L∕4�: (B5a)

t � t0 � t−1 �
exp�iK L∕2�
cos�αK L∕4� : (B5b)

For more details on the solving processes, please refer to
Ref. [51]. The scattering coefficients r and t will tend to infinity
when αK L∕4 � π∕2, as shown in Fig. 9(a). Hence, the thresh-
old length of lasing lPA � 2π∕�αK � � vsπ∕�αΩ∕2�. When
the modulation length is equal to the threshold length, the am-
plitude of the reflection and the transmission waves will linearly
increase with time, as shown in Fig. 9(b).

To excite the lasing state, a phase condition needs to be sat-
isfied [50]. When the length of modulation Lm is smaller than
the threshold length lPA , this phase condition cannot be ful-
filled. For Lm > lPA, the lasing state can be excited with a com-
plex eigenfrequency.

Here, we use the Bloch–Floquet theory in Appendix A to
analytically solve the eigenfrequency with α � 0 and m � 0.
Note that the imaginary part of frequency ωi is unknown.

In the meantime, as shown in Fig. 8(b), the wavenumbers,
i.e., kp and kp−1, are related to frequency through dispersion
relation. Therefore, to solve the lasing state, Eqs. (A3) and
(A10) should be solved at the same time.

Fig. 8. Dispersion curve of the time-Floquet media with permittiv-
ity ε�t� � εs�1� 2α cos Ωt�. (a) The real part and (b) the imaginary
part of the eigenfrequency are shown.

Fig. 9. (a) Dependence of the amplitude of the reflection and the
transmission coefficients on the modulation length Lm. (b) The reflec-
tion and transmission fields for Lm � lPA. (c) The imaginary part of
the eigenfrequency as the modulation length increases for Lm > lPA.
Here, α � 0.01.
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As shown in Fig. 9(c), the parametric gain of the time-
varying slab increases with the modulation length since less
energy in the slab is lost due to scattering.

APPENDIX C: THE FREQUENCY CONVERSION
IN LA

In this section, we show the LA supported by media with per-
mittivity ε�x, t� � εs�1� 2α cos�K x −Ωt�� and the modula-
tion velocity vm � vs. As shown in Fig. 10(a), we depict the
amplitude of the electric fields transmitted from the space-time
modulated slab. The highest order of frequency conversion is
selected at which the amplitude equals 10−2 [the dashed line in
Fig. 10(a)]. The corresponding frequency is denoted as ωmax.
The exponential growth relation between ωmax and the modu-
lation length is verified in the inset of Fig. 10(a).

This exponential relationship does not change with the vary-
ing incident frequencies and modulation strengths, as shown in
Fig. 10(b). Therefore, the luminal gain can be defined as
ln�ωmax∕Ω�∕�K Lm�. It is found that the value of luminal gain
is just equal to the modulation strength α.

Another result showing the parametric nature of LA is that
the relation between frequency up-conversion effect and phase
mismatching K −Ω∕vs has a sinc function shape, as shown in
Fig. 10(c).

APPENDIX D: LUMINAL GAIN AND
PARAMETRIC GAIN IN CASCADED PA

As shown in Fig. 11(a), the introduction of luminal modulation
does not undermine the parametric gain. The parametric gain is
improved with the increased total modulation strength.

In Fig. 11(b), the highest harmonic frequency for amplifi-
cation ωmax increases with the modulation length, but they do
not follow an exponential growth relationship as the LA shown
in Appendix C. The luminal gain in cascaded PA represents the

capability to transfer energy from the amplifying fundamental
mode to the high harmonic components. It is essentially differ-
ent from the luminal gain described above.

We also show the influence of modulation velocity on cas-
caded PA [Fig. 11(c)]. It is found that the high harmonic com-
ponents can be efficiently amplified for a small deviation of vm
from vs. In the meantime, the excitation of harmonic compo-
nents in cascaded PA can be manipulated by this deviation.

APPENDIX E: DESIGN OF PHOTONIC
BANDSTRUCTURE FOR CPO

To reduce the threshold length of lasing, the photonic crystal
(PC) is designed to forbid the propagation of light at each har-
monic frequency, as shown in Fig. 12(a). The photonic crystal
is composed of alternative dielectric layers with a refractive in-
dex na � 3.5 and nb � 1. All harmonic frequencies are
just located at the center of the bandgap. This special case hap-
pens when the thicknesses of dielectric a and b satisfy
da � nbΛ∕�na � nb� and db � naΛ∕�na � nb�, where Λ is
the period of photonic crystals. The bandgaps are closed at
frequencies mΩ for m ∈ Z .

The resonant condition of the cavity is reached if the phase
change of light propagating a round trip in a cavity is
Φ � 2kaL�ΦL �ΦR � 2mπ for m ∈ Z , where ΦL �ΦR�
is the reflection phase of the right (left) PCs incident from
the cavity. At the center of bandgaps in Fig. 12(a), the reflection
phase of photonic crystals is just equal to π. Hence, the reso-
nant condition is satisfied at all harmonic frequencies if the
length of cavity Lm � mπvs∕ω or Lm � mαlPA for m ∈ Z.
The phase change Φ is given in Fig. 12(b).

We also design the CPO operating at a single frequency.
The corresponding bandstructure is shown in Fig. 12(c). The
bandgap exists at all harmonic frequencies except for the har-
monic frequency of 10.5Ω.

Fig. 10. (a) The frequency up-conversion effect of the LA and the
characterization of the luminal gain. (b) The luminal gain with varying
excitation frequencies and modulation strengths. (c) The relation-
ship between the highest order of frequency conversion and phase
mismatching.

Fig. 11. (a) The exponential growth rate of the cascaded PA as
modulation strength α increases. (b) The number of harmonic com-
ponents in the cascaded PA as the modulation length increases. Here,
α � 0.02 and β � 0.1. (c) The dependence of the cascaded PA on
phase mismatching dK � K ∕K s − 1.
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